
APPENDIX D: Dynamic Programming 653

The function gives the expected reward starting in state x at time over the
remainder of the truncated horizon We call this truncated problem the

The principle of optimality then states the following:

THEOREM D.2 If is an optimal policy for the problem
(D.1), then the truncated policy is optimal for the
That is,

We omit a formal proof of this fact, but it is easy to see why it holds. Indeed,
suppose was not optimal for the and another policy,

yields strictly greater expected reward. If this were true, then the policy

would produce a strictly greater expected reward than does the policy for the
original problem, which contradicts the optimality of Hence, must be optimal
for the

The Dynamic Programming Recursion
The principle of optimality leads naturally to a recursive procedure for finding the
optimal policy. First, for all and all define the optimal reward-
to-go, called the value function, by

The value function gives the optimal expected reward from time onward given that
we are in state x at time Note that is the optimal expected reward for the
original problem with initial state x. The principle of optimality leads to the following
recursive procedure for determining the value function:

PROPOSITION D.15 The value function is the unique solution to the recur-
sion

for all and all with boundary conditions

Moreover, if achieves the maximum in (D.2) for all and then
is an optimal policy.

We omit a formal proof of this fact, but again the reasoning is quite intuitive—namely,
since measures the optimal expected reward given state in the
next time-period, the optimal value of the should be the result
of maximizing the sum of the current expected reward, and the ex-
pected reward from the
This is precisely what (D.2) does. The result yields the optimal value
function and the process is repeated.

The complexity of this recursion depends on the size of the state space control
space and number of time-periods T. The worst-case complexity is

